A Class of Variational-Hemivariational Inequalities with Applications to Frictional Contact Problems
نویسندگان
چکیده
A class of variational-hemivariational inequalities is studied in this paper. An inequality in the class involves two nonlinear operators and two nondifferentiable functionals, of which at least one is convex. An existence and uniqueness result is proved for a solution of the inequality. Continuous dependence of the solution on the data is shown. Convergence is established rigorously for finite element solutions of the inequality. An error estimate is derived which is of optimal order for the linear finite element method under appropriate solution regularity assumptions. Finally, the results are applied to a variational-hemivariational inequality arising in the study of some frictional contact problems.
منابع مشابه
History-dependent hemivariational inequalities with applications to Contact Mechanics
In this paper we survey some of our recent results on the existence and uniqueness of solutions to nonconvex and nonsmooth problems which arise in Contact Mechanics. The approach is based on operator subdifferential inclusions and hemivariational inequalities, and focuses on three aspects. First, we report on results on the second order history-dependent subdifferential inclusions and hemivaria...
متن کاملExistence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application
This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...
متن کاملOptimal control for a class of mechanical thermoviscoelastic frictional contact problems
Abstract: We study optimal control of systems governed by a coupled system of hemivariational inequalities, modeling a dynamic thermoviscoelastic problem, which describes frictional contact between a body and a foundation. We employ the Kelvin-Voigt viscoelastic law, include the thermal effects and consider the general nonmonotone and multivalued subdifferential boundary conditions. We consider...
متن کاملTwo Remarks on the Stability of Generalized Hemivariational Inequalities
The present paper is devoted to the stability analysis of a general class of hemivariational inequalities. Essentially, we present two approaches for this class of problems. First, using a general version of Minty’s Lemma and the convergence result of generalized gradients due to T. Zolezzi [23], we prove a stability result in the spirit of Mosco’s results on the variational inequalities [14]. ...
متن کاملHemiequilibrium Problems
We consider a new class of equilibrium problems, known as hemiequilibrium problems. Using the auxiliary principle technique, we suggest and analyze a class of iterative algorithms for solving hemiequilibrium problems, the convergence of which requires either pseudomonotonicity or partially relaxed strong monotonicity. As a special case, we obtain a new method for hemivariational inequalities. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2014